Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1290643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235202

RESUMO

Rusts of the genus Puccinia are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and Puccinia striiformis f. sp. tritici (Pst), can occur singularly or in mixed infections and pose a threat to wheat production globally in terms of the wide dispersal of their urediniospores. The development of durable resistant cultivars is the most sustainable method for controlling them. Many resistance genes have been identified, characterized, genetically mapped, and cloned; several quantitative trait loci (QTLs) for resistance have also been described. However, few studies have considered resistance to all three rust pathogens in a given germplasm. A genome-wide association study (GWAS) was carried out to identify loci associated with resistance to the three rusts in a collection of 230 inbred lines of tetraploid wheat (128 of which were Triticum turgidum ssp. durum) genotyped with SNPs. The wheat panel was phenotyped in the field and subjected to growth chamber experiments across different countries (USA, Mexico, Morocco, Italy, and Spain); then, a mixed linear model (MLM) GWAS was performed. In total, 9, 34, and 5 QTLs were identified in the A and B genomes for resistance to Pgt, Pt, and Pst, respectively, at both the seedling and adult plant stages. Only one QTL on chromosome 4A was found to be effective against all three rusts at the seedling stage. Six QTLs conferring resistance to two rust species at the adult plant stage were mapped: three on chromosome 1B and one each on 5B, 7A, and 7B. Fifteen QTLs conferring seedling resistance to two rusts were mapped: five on chromosome 2B, three on 7B, two each on 5B and 6A, and one each on 1B, 2A, and 7A. Most of the QTLs identified were specific for a single rust species or race of a species. Candidate genes were identified within the confidence intervals of a QTL conferring resistance against at least two rust species by using the annotations of the durum (cv. 'Svevo') and wild emmer wheat ('Zavitan') reference genomes. The 22 identified loci conferring resistance to two or three rust species may be useful for breeding new and potentially durable resistant wheat cultivars.

2.
Plants (Basel) ; 11(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893608

RESUMO

Leaf rust (LR) and stem rust (SR) are diseases increasingly impacting wheat production worldwide. Fungal pathogens producing rust diseases in wheat may cause yield losses of up to 50−60%. One of the most effective methods for preventing such losses is the development of resistant cultivars with high yield potential. This goal can be achieved through complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. The objective of this study was to identify sources of tetraploid wheat resistance to LR and SR races, both at the seedling growth stage in the greenhouse and at the adult plant stage in field experiments, under the conditions of the North Kazakhstan region. A panel consisting of 193 tetraploid wheat accessions was used in a genome-wide association study (GWAS) for the identification of quantitative trait loci (QTLs) associated with LR and SR resistance, using 16,425 polymorphic single-nucleotide polymorphism (SNP) markers in the seedling and adult stages of plant development. The investigated panel consisted of seven tetraploid subspecies (Triticum turgidum ssp. durum, ssp. turanicum, ssp. turgidum, ssp. polonicum, ssp. carthlicum, ssp. dicoccum, and ssp. dicoccoides). The GWAS, based on the phenotypic evaluation of the tetraploid collection's reaction to the two rust species at the seedling (in the greenhouse) and adult (in the field) stages, revealed 38 QTLs (p < 0.001), comprising 17 for LR resistance and 21 for SR resistance. Ten QTLs were associated with the reaction to LR at the seedling stage, while six QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. Eleven QTLs were associated with SR response at the seedling stage, while nine QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. A comparison of these results with previous LR and SR studies indicated that 11 of the 38 QTLs are presumably novel loci. The QTLs identified in this work can potentially be used for marker-assisted selection of tetraploid and hexaploid wheat for the breeding of new LR- and SR-resistant cultivars.

3.
Plant Physiol Biochem ; 172: 48-55, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030365

RESUMO

Specialized plant metabolites (SPMs), traditionally referred to as 'secondary metabolites', are chemical compounds involved in a broad range of biological functions, including plant responses to abiotic and biotic stresses. Moreover, some of them have a role in end-product quality with potential health benefits in humans. For this reason, they became an important target of studies focusing on their mechanisms of action and use in crop breeding and management. In this review we summarize the specific role of SPMs in physiological processes and in plant resistance to abiotic and biotic stresses, and the different strategies to enhance their production/accumulation in plant tissues under stress, including genetic approaches (marker-assisted selection and biotechnological tools) and agronomic management (fertilizer applications, cultivation method and beneficial microorganisms). New crop management strategies based on the direct application of the most promising compounds in form of plant residuals or liquid formulations are also described.


Assuntos
Melhoramento Vegetal , Estresse Fisiológico , Fertilizantes , Plantas
4.
Plants (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206299

RESUMO

The renewed focus on cereal landraces is a response to some negative consequences of modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions, constituting an important source of genetic diversity usable in modern plant breeding to improve the adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments. Traditional agricultural production systems have played an important role in the evolution and conservation of wide variability in gene pools within species. Today, on-farm and ex situ conservation in gene bank collections, together with data sharing among researchers and breeders, will greatly benefit cereal improvement. Many efforts are usually made to collect, organize and phenotypically and genotypically analyse cereal landrace collections, which also utilize genomic approaches. Their use in breeding programs based on genomic selection, and the discovery of beneficial untapped QTL/genes/alleles which could be introgressed into modern varieties by MAS, pyramiding or biotechnological tools, increase the potential for their better deployment and exploitation in breeding for a more sustainable agricultural production, particularly enhancing adaptation and productivity in stress-prone environments to cope with current climate changes.

5.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063853

RESUMO

Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/genética , Agricultura/métodos , Animais , Genes de Plantas/genética , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Humanos , Melhoramento Vegetal/métodos
6.
PLoS One ; 15(6): e0234863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574201

RESUMO

Durum wheat (Triticum turgidum L. ssp. durum) is one of the top crops in Kazakhstan, where it is cultivated in different ecological niches, mainly at higher latitudes in the steppe zone of the northern region. Therefore, local breeding programs for durum wheat are primarily focused on selection for high productivity in Northern Kazakhstan based on the introduction of promising foreign germplasm and the adoption of marker-assisted selection. In this study, a world tetraploid wheat collection consisted of 184 primitive and domesticated accessions, which were previously genotyped using 16,425 polymorphic SNP markers, was field-tested in Northern and South-eastern Kazakhstan. The field tests have allowed the identification of 80 durum wheat promising lines in Northern Kazakhstan in comparison with a local standard cultivar. Also, GGE (Genotype and Genotype by Environment) biplot analyses for yield performance revealed that accessions of T. dicoccum, T. carthlicum, and T. turanicum also have potential to improve durum wheat yield in the region. The genome-wide association study (GWAS) has allowed the identification of 83 MTAs (marker-trait associations) for heading date, seed maturation time, plant height, spike length, number of fertile spikes, number of kernels per spike, and thousand kernel weight. The comparison of the 83 identified MTAs with those previously reported in GWAS for durum wheat suggests that 38 MTAs are presumably novel, while the co-localization of a large number of MTAs with those previously published confirms the validity of the results of this study. The MTAs reported herewith will provide the opportunity to implement marker-assisted selection in ongoing durum wheat breeding projects targeting higher productivity in the region.


Assuntos
Genoma de Planta/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Seleção Genética , Triticum/genética , Estudo de Associação Genômica Ampla , Pradaria , Cazaquistão , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Tetraploidia
7.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936286

RESUMO

By selecting for prostrate growth habit of the juvenile phase of the cycle, durum wheat cultivars could be developed with improved competitive ability against weeds, and better soil coverage to reduce the soil water lost by evaporation. A panel of 184 durum wheat (Triticum turgidum subsp. durum) genotypes, previously genotyped with DArT-seq markers, was used to perform association mapping analysis of prostrate/erect growth habit trait and to identify candidate genes. Phenotypic data of plant growth habit were recorded during three consecutive growing seasons (2014-2016), two different growth conditions (field trial and greenhouse) and two sowing periods (autumn and spring). Genome-wide association study revealed significant marker-trait associations, twelve of which were specific for a single environment/year, 4 consistent in two environments, and two MTAs for the LSmeans were identified across all environments, on chromosomes 2B and 5A. The co-localization of some MTAs identified in this study with known vernalization and photoperiod genes demonstrated that the sensitivity to vernalization and photoperiod response are actually not only key components of spring/winter growth habit, but they play also an important role in defining the magnitude of the tiller angle during the tillering stage. Many zinc-finger transcription factors, such as C2H2 or CCCH-domain zinc finger proteins, known to be involved in plant growth habit and in leaf angle regulation were found as among the most likely candidate genes. The highest numbers of candidate genes putatively related to the trait were found on chromosomes 3A, 4B, 5A and 6A. Moreover, a bioinformatic approach has been considered to search for functional ortholog genes in wheat by using the sequence of rice and barley tiller angle-related genes. The information generated could be used to improve the understanding of the mechanisms that regulate the prostrate/erect growth habit in wheat and the adaptive potential of durum wheat under resource-limited environmental conditions.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Estações do Ano , Triticum/crescimento & desenvolvimento
8.
Int J Mol Sci ; 19(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563213

RESUMO

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major biotic constraint to wheat production worldwide. Disease resistant cultivars are a sustainable means for the efficient control of this disease. To identify quantitative trait loci (QTLs) conferring resistance to stem rust at the seedling stage, an association mapping panel consisting of 230 tetraploid wheat accessions were evaluated for reaction to five Pgt races under greenhouse conditions. A high level of phenotypic variation was observed in the panel in response to all of the races, allowing for genome-wide association mapping of resistance QTLs in wild, landrace, and cultivated tetraploid wheats. Twenty-two resistance QTLs were identified, which were characterized by at least two marker-trait associations. Most of the identified resistance loci were coincident with previously identified rust resistance genes/QTLs; however, six regions detected on chromosomes 1B, 5A, 5B, 6B, and 7B may be novel. Availability of the reference genome sequence of wild emmer wheat accession Zavitan facilitated the search for candidate resistance genes in the regions where QTLs were identified, and many of them were annotated as NOD (nucleotide binding oligomerization domain)-like receptor (NLR) genes or genes related to broad spectrum resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Basidiomycota/patogenicidade , Cromossomos de Plantas/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Tetraploidia , Triticum/microbiologia
9.
Sci Rep ; 8(1): 10612, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006562

RESUMO

In this work we investigated the variability and the genetic basis of susceptibility to arbuscular mycorrhizal (AM) colonization of wheat roots. The mycorrhizal status of wild, domesticated and cultivated tetraploid wheat accessions, inoculated with the AM species Funneliformis mosseae, was evaluated. In addition, to detect genetic markers in linkage with chromosome regions involved in AM root colonization, a genome wide association analysis was carried out on 108 durum wheat varieties and two AM fungal species (F. mosseae and Rhizoglomus irregulare). Our findings showed that a century of breeding on durum wheat and the introgression of Reduced height (Rht) genes associated with increased grain yields did not select against AM symbiosis in durum wheat. Seven putative Quantitative Trait Loci (QTLs) linked with durum wheat mycorrhizal susceptibility in both experiments, located on chromosomes 1A, 2B, 5A, 6A, 7A and 7B, were detected. The individual QTL effects (r2) ranged from 7 to 16%, suggesting a genetic basis for this trait. Marker functional analysis identified predicted proteins with potential roles in host-parasite interactions, degradation of cellular proteins, homeostasis regulation, plant growth and disease/defence. The results of this work emphasize the potential for further enhancement of root colonization exploiting the genetic variability present in wheat.


Assuntos
Glomeromycota/isolamento & purificação , Interações entre Hospedeiro e Microrganismos/genética , Micorrizas/isolamento & purificação , Simbiose/genética , Triticum/microbiologia , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Locos de Características Quantitativas , Nódulos Radiculares de Plantas/microbiologia , Triticum/genética
10.
PLoS One ; 13(1): e0190162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324803

RESUMO

Increasing grain yield potential in wheat has been a major target of most breeding programs. Genetic advance has been frequently hindered by negative correlations among yield components that have been often observed in segregant populations and germplasm collections. A tetraploid wheat collection was evaluated in seven environments and genotyped with a 90K SNP assay to identify major and stable quantitative trait loci (QTL) for grain yield per spike (GYS), kernel number per spike (KNS) and thousand-kernel weight (TKW), and to analyse the genetic relationships between the yield components at QTL level. The genome-wide association analysis detected eight, eleven and ten QTL for KNS, TKW and GYS, respectively, significant in at least three environments or two environments and the mean across environments. Most of the QTL for TKW and KNS were found located in different marker intervals, indicating that they are genetically controlled independently by each other. Out of eight KNS QTL, three were associated to significant increases of GYS, while the increased grain number of five additional QTL was completely or partially compensated by decreases in grain weight, thus producing no or reduced effects on GYS. Similarly, four consistent and five suggestive TKW QTL resulted in visible increase of GYS, while seven additional QTL were associated to reduced effects in grain number and no effects on GYS. Our results showed that QTL analysis for detecting TKW or KNS alleles useful for improving grain yield potential should consider the pleiotropic effects of the QTL or the association to other QTLs.


Assuntos
Genes de Plantas , Estudo de Associação Genômica Ampla , Tetraploidia , Triticum/genética , Locos de Características Quantitativas
11.
Mol Biol Evol ; 33(7): 1740-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27189559

RESUMO

Domestication and breeding have influenced the genetic structure of plant populations due to selection for adaptation from natural habitats to agro-ecosystems. Here, we investigate the effects of selection on the contents of 51 primary kernel metabolites and their relationships in three Triticum turgidum L. subspecies (i.e., wild emmer, emmer, durum wheat) that represent the major steps of tetraploid wheat domestication. We present a methodological pipeline to identify the signature of selection for molecular phenotypic traits (e.g., metabolites and transcripts). Following the approach, we show that a reduction in unsaturated fatty acids was associated with selection during domestication of emmer (primary domestication). We also show that changes in the amino acid content due to selection mark the domestication of durum wheat (secondary domestication). These effects were found to be partially independent of the associations that unsaturated fatty acids and amino acids have with other domestication-related kernel traits. Changes in contents of metabolites were also highlighted by alterations in the metabolic correlation networks, indicating wide metabolic restructuring due to domestication. Finally, evidence is provided that wild and exotic germplasm can have a relevant role for improvement of wheat quality and nutritional traits.


Assuntos
Metabolômica/métodos , Triticum/genética , Triticum/metabolismo , Evolução Biológica , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Domesticação , Evolução Molecular , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética , Sementes/metabolismo , Tetraploidia
12.
Front Plant Sci ; 7: 2005, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28111584

RESUMO

Crop species have been deeply affected by the domestication process, and there have been many efforts to identify selection signatures at the genome level. This knowledge will help geneticists to better understand the evolution of organisms, and at the same time, help breeders to implement successful breeding strategies. Here, we focused on domestication in the Mesoamerican gene pool of Phaseolus vulgaris by sequencing 49 gene fragments from a sample of 45 P. vulgaris wild and domesticated accessions, and as controls, two accessions each of the closely related species Phaseolus coccineus and Phaseolus dumosus. An excess of nonsynonymous mutations within the domesticated germplasm was found. Our data suggest that the cost of domestication alone cannot explain fully this finding. Indeed, the significantly higher frequency of polymorphisms in the coding regions observed only in the domesticated plants (compared to noncoding regions), the fact that these mutations were mostly nonsynonymous and appear to be recently derived mutations, and the investigations into the functions of their relative genes (responses to biotic and abiotic stresses), support a scenario that involves new functional mutations selected for adaptation during domestication. Moreover, consistent with this hypothesis, selection analysis and the possibility to compare data obtained for the same genes in different studies of varying sizes, data types, and methodologies allowed us to identify four genes that were strongly selected during domestication. Each selection candidate is involved in plant resistance/tolerance to abiotic stresses, such as heat, drought, and salinity. Overall, our study suggests that domestication acted to increase functional diversity at target loci, which probably controlled traits related to expansion and adaptation to new agro-ecological growing conditions.

13.
Front Plant Sci ; 6: 1033, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697025

RESUMO

Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.

14.
PLoS One ; 9(4): e95211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759998

RESUMO

Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker-trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker-trait associations.


Assuntos
Desequilíbrio de Ligação/genética , Tetraploidia , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Triticum
15.
BMC Genomics ; 14: 562, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23957646

RESUMO

BACKGROUND: Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. RESULTS: Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2-6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. CONCLUSIONS: The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore, the analysis of the co-localization of resistance loci and functional markers provides a large list of candidate genes and opens up a new perspective for the fine mapping and isolation of resistance genes, and for the marker-assisted improvement of resistance in wheat.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Ascomicetos , Mapeamento Cromossômico , Genes de Plantas , Triticum/microbiologia
16.
PLoS One ; 8(6): e67280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826256

RESUMO

Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.


Assuntos
Variação Genética , Tetraploidia , Triticum/genética , Teorema de Bayes , Mapeamento Cromossômico , Análise por Conglomerados , Domesticação , Loci Gênicos , Marcadores Genéticos , Técnicas de Genotipagem , Linhagem , Fenótipo , Folhas de Planta/genética , Especificidade da Espécie
17.
Int J Mol Sci ; 14(4): 7302-26, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23549266

RESUMO

The most represented group of resistance genes are those of the nucleotide binding site-leucine-rich repeat (NBS-LRR) class. These genes are very numerous in the plant genome, and they often occur in clusters at specific loci following gene duplication and amplification events. To date, hundreds of resistance genes and relatively few quantitative trait loci for plant resistance to pathogens have been mapped in different species, with some also cloned. When these NBS-LRR genes have been physically or genetically mapped, many cases have shown co-localization between resistance loci and NBS-LRR genes. This has allowed the identification of candidate genes for resistance, and the development of molecular markers linked to R genes. This review is focused on recent genomics studies that have described the abundance, distribution and evolution of NBS-LRR genes in plant genomes. Furthermore, in terms of their expression, NBS-LRR genes are under fine regulation by cis- and trans-acting elements. Recent findings have provided insights into the roles of alternative splicing, the ubiquitin/ proteasome system, and miRNAs and secondary siRNAs in the regulation of NBS-LRR gene expression at the post-transcriptional, post-translational and epigenetic levels. The possibility to use this knowledge for genetic improvement of plant resistance to pathogens is discussed.


Assuntos
Genes de Plantas , Plantas/genética , Plantas/imunologia , Proteínas/genética , Sítios de Ligação , Cruzamento , Evolução Molecular , Proteínas de Repetições Ricas em Leucina
18.
Theor Appl Genet ; 125(8): 1619-38, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22872151

RESUMO

A durum wheat consensus linkage map was developed by combining segregation data from six mapping populations. All of the crosses were derived from durum wheat cultivars, except for one accession of T. ssp. dicoccoides. The consensus map was composed of 1,898 loci arranged into 27 linkage groups covering all 14 chromosomes. The length of the integrated map and the average marker distance were 3,058.6 and 1.6 cM, respectively. The order of the loci was generally in agreement with respect to the individual maps and with previously published maps. When the consensus map was aligned to the deletion bin map, 493 markers were assigned to specific bins. Segregation distortion was found across many durum wheat chromosomes, with a higher frequency for the B genome. This high-density consensus map allowed the scanning of the genome for chromosomal rearrangements occurring during the wheat evolution. Translocations and inversions that were already known in literature were confirmed, and new putative rearrangements are proposed. The consensus map herein described provides a more complete coverage of the durum wheat genome compared with previously developed maps. It also represents a step forward in durum wheat genomics and an essential tool for further research and studies on evolution of the wheat genome.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genoma de Planta/genética , Triticum/genética , Segregação de Cromossomos/genética , Sequência Consenso , Ligação Genética , Marcadores Genéticos , Translocação Genética
19.
Plant Sci ; 185-186: 40-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325865

RESUMO

Alternative splicing is a mechanism for the regulation of gene expression that is widespread in higher eukaryotes. Genome-wide approaches, based on comparison of expressed and genomic sequences, on tiling arrays, and on next-generation sequencing, have provided growing knowledge of the extent, distribution and association of alternative splicing with stress-related genes in plants. The functional meaning of alternative splicing in response to stress has been defined for many genes, and in particular for those involved in the regulation of the stress responses, such as protein kinases, transcription factors, splicing regulators and pathogen-resistance genes. The production of proteins with diverse domain rearrangements from the same gene is the main alternative splicing mechanism for pathogen-resistance genes. The plant response to abiotic stress is also characterized by a second mechanism, which consists of the expression of alternative transcripts that are targeted to nonsense-mediated decay. These quantitatively regulate stress-related gene expression. Many alternative splicing events are well conserved among plant species, and also across kingdoms, especially those observed in response to stress, for genes encoding splicing regulators, and other classes of RNA-binding proteins. Nevertheless, non-conserved events indicate that alternative splicing represents an evolutionary strategy that rapidly increases genome plasticity and develops new gene functions, along with other mechanisms such as gene duplication. Finally, the study of the naturally occurring variability of alternative splicing and the identification of genomic regions involved in the regulation of alternative splicing in crops are proposed as strategies for selecting genotypes with superior performance under adverse environmental conditions.


Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica de Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética , Evolução Biológica , Produtos Agrícolas , Resistência à Doença/genética , Genoma de Planta/genética , Plantas/genética , Plantas/imunologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...